Telomerase Activation after Recruitment in Fission Yeast
نویسندگان
چکیده
Current models depict that telomerase recruitment equates to activation. Telomeric DNA-binding proteins and the telomerase accessory proteins coordinate the recruitment of telomerase to the ends of chromosomes in a telomere length- and cell-cycle-dependent manner [1-4]. Recent studies have demonstrated that the telomeric protein TPP1 and its binding protein TIN2 are key proteins for both telomerase recruitment and processivity in mammalian cells [5-7]. Although the precise molecular mechanism of telomerase recruitment has not yet been established, targeted point mutations within the oligonucleotide/oligosaccharide-binding (OB)-fold domain of TPP1 have been shown to impair telomerase association and processivity [8-10]. In fission yeast, telomerase is recruited through an interaction between the telomerase subunit Est1 and Ccq1, a component of the Pot1-Tpz1 telomere complex (POT1-TPP1 orthologs) [11-15]. Here, we demonstrate that association of telomerase with telomeres does not engage activity. We describe a mutation of Tpz1 that causes critical telomere shortening despite telomeric accumulation of the telomerase catalytic subunit, Trt1. Furthermore, Est1-directed telomerase association with Ccq1 is transient, and the Est1-Ccq1 interaction does not remain the bridge between telomeres and telomerase. Rather, direct interaction of Trt1 with Tpz1 is critical for telomere elongation. Moreover, Ccq1, which has been well characterized as a telomerase recruiter, is also required for the activation of telomere-associated telomerase. Our findings reveal a layer of telomerase regulation that controls activity after recruitment.
منابع مشابه
Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment
In both fission yeast and humans, the shelterin complex plays central roles in regulation of telomerase recruitment, protection of telomeres against DNA damage response factors, and formation of heterochromatin at telomeres. While shelterin is essential for limiting activation of the DNA damage checkpoint kinases ATR and ATM at telomeres, these kinases are required for stable maintenance of tel...
متن کاملCcq1-Tpz1TPP1 interaction facilitates telomerase and SHREC association with telomeres in fission yeast
Evolutionarily conserved shelterin complex is essential for telomere maintenance in the fission yeast Schizosaccharomyces pombe. Elimination of the fission yeast shelterin subunit Ccq1 causes progressive loss of telomeres due to the inability to recruit telomerase, activates the DNA damage checkpoint, and loses heterochromatin at telomere/subtelomere regions due to reduced recruitment of the he...
متن کاملFission Yeast Tel1ATM and Rad3ATR Promote Telomere Protection and Telomerase Recruitment
The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomeras...
متن کاملMulti-step coordination of telomerase recruitment in fission yeast through two coupled telomere-telomerase interfaces
Tightly controlled recruitment of telomerase, a low-abundance enzyme, to telomeres is essential for regulated telomere synthesis. Recent studies in human cells revealed that a patch of amino acids in the shelterin component TPP1, called the TEL-patch, is essential for recruiting telomerase to telomeres. However, how TEL-patch-telomerase interaction integrates into the overall orchestration of t...
متن کاملFission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension
Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3(ATR)/Tel1(ATM)-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2014